
Programming, Data Structures and Algorithms in Python

Prof. Madhavan Mukund

Department of Computer Science and Engineering

Chennai Mathematical Institute,Madras

Week - 08

Lecture - 02

Grid Paths

(Refer Slide Time: 00:02)

In the last lecture we looked at how to make iterative or inductive definitions more

efficient than naïve recursion, and we saw memoization and dynamic programming as

tools to do this.

Now, let us look at a typical problem and see how we can apply this technique. So, here

is a problem of grid paths. So, we have a grid here, you can imagine there are roads

which are arranged in a rectangular format. We can imagine that the intersections are

numbered. So, we have (0, 0) at the bottom left corner and in this case, we have (5, 10)

because going across from left to right we have 1, 2, 3, 4, 5 different intersections and 10

going up. So, we have at (5, 10) the top right corner.

If these are roads the constraint that we have is that one can only travel up or right. So,

you can go up a road or you can go right, but you cannot come down. This is not

allowed. These are one way roads which goes up and right, and what we want to ask is

how many ways there are to go from the bottom left corner to the top right corner. So,

567



we want to count the number of what are called grid paths. So, a grid path is one which

follows this right. So, we want to know how many such different paths are there which

take us from (0, 0) to (5, 10) only going up or right.

(Refer Slide Time: 01:26)

So, here is one path drawn in blue.

(Refer Slide Time: 01:32)

Here is a different path drawn in red and notice that these 2 paths actually, start in

different directions from the first point and they never meet except with the target. They

do not overlap at all. On the other hand we could have paths which overlap. This yellow

568



path overlaps a part of its way with the blue path in this section and it also overlaps with

the red path in 2 portions. There are many different ways in which we can choose to

make this up and right moves and the question is, how many total such different paths

are there?

(Refer Slide Time: 02:05)

There is a very standard and elegant combinatorial solution. So, one way of thinking

about this is just to determine, how many moves we have to make. We have to go from 0

to 5 in one direction and 0 to 10 in the other direction. So, we have to make a total

number of 5 horizontal moves and 10 vertical moves, in other words every path no

matter which direction we started and which move, which choice of moves we make

must make 15 steps and of these 5 must be horizontal steps and 10 must be vertical steps,

because they all take us from (0, 0) to (5, 10).

So, all we have to do since we know that these 5 steps are horizontal and 10 are vertical

is to just demarcate which ones are horizontal and which are vertical. Now once we

know which ones are horizontal we know what sequence they come in because the first

horizontal step takes us from column 0 to column 1, second 1 takes us from one to 2. So,

we cannot do it in any order other than that.

So, we have in other words we have 15 slots, where we can make moves and then we

just say first we make an up move, then we make a right move then we make an up move

then make another up move and so on. So, every path can be drawn out like this as 10 up

569



moves and 5 right moves and if we fix the 5 right moves then automatically all the

remaining slots must be 10 up moves or conversely.

It is either 15 choose 5, it is the way of choosing 5 positions to make the right move out

of the 15, and it turns out that the definition of 15 choose 5 is clearly the same as 15

choose 10 because we could also fix the 10 up moves and the definition is basically... if

you know the definitions... then n choose k is n factorial by k factorial into n minus k

factorial.

This k and n minus k basically says that 15 minus 5 is 10. So, we get a symmetric

function in terms of k and n minus k. In this case we can apply this formula if you would

like to call it that and directly get that the answer is 3003. There does not appear to be

much to compute other than writing out large factorials and then seeing what the number

comes.

(Refer Slide Time: 04:11)

But the problem becomes more interesting, if we constrain it by saying that some of

these intersections are blocked for instance, supposing there is some road work going on

and we cannot go through this intersection (2, 4). This is the intersection 2 comma 4

second column and the fourth row counting from below. It’s actually 2 comma 3, but 1,

2, 3, 4 yeah 2 comma 4. Now, if we cannot go through this then any path which goes

through this particular block intersection should no longer be counted. Out to those 3003

some paths are no longer valid paths.

570



(Refer Slide Time: 04:49)

For instance, in the earlier thing the blue path that we had drawn actually goes through

this, the red path does not, where the yellow path overlapped with the blue path

unfortunately in this bad section. It also passes through this. There are some paths which

are allowed from the 3003 and some which are not. So, how do we determine how many

paths survived this kind of block.

(Refer Slide Time: 05:09)

So, again we can use a combinatorial argument in order to be blocked a path must go to

(2, 4) and then from (2, 4) to (5, 5). If we could only count how many paths go from (0,

571



0) to (2, 4) and then how many paths go from (2, 4) to (5, 10), these are all the bad paths.

So, we can count these bad paths and subtract them from the good paths. How do we

count the bad paths well we can just solve a smaller version of the problem. So, we have

an intermediate target.

So, we solve this grid how many paths go from here to here, how many paths go from

here to here. So, from (0, 0) to (2, 4) we get 4 plus 2 remember it 10 plus 5 it was a curve

or get, 10; 4 plus 2 choose 2. So, we get 15 and from here to here the difference is that

we have to do in both directions 3 and so, we have to go sorry we have to go up 6 and we

have to go right 3, we are at (2, 4). So, we have to go from 4 to 10 and from 2 to 5.

So, we have 6 plus 3 choose 3, 84 ways of going from (2, 4) to this and each of the ways

in the bottom, can be combined with a way on the top. So, we multiply this and we get

1260 paths which pass through this bad intersection, we subtract this from the original

number 3003 and we get 1743 paths which remain. So, a combinatorial approach still

works.

(Refer Slide Time: 06:32)

Now, what happens if we put 2 such intersections? So, we will you can do the same thing

we can count all the parts which get blocked because of the first intersection, we can

count all the paths which pass through in this case (4, 4) is the second intersection which

has been blocked. So, we can count all these parts which pass through (4, 4). This we

572



know how to do: we just computed it for (2, 4), but the problem is that there are some

paths like the yellow paths which pass through both (2, 4) and (4, 4).

So, we need a third count we need to count paths which pass through both of these and

make sure we do not double count them. So, one way is that we just add these back. This

is something which is called in combinatorics inclusion and exclusion. So, when we have

these overlapping exclusions, then we have to count the overlaps and include them back.

We have to keep doing this step by step. If we have 3 holes we get an even more

complicated inclusion exclusion formula and it rapidly becomes very complicated even

to calculate the formula that we need to get. Is there a simpler way to do this?

(Refer Slide Time: 07:37)

Let us look at the inductive structure of the problem, suppose we say we want to get in

one step to intersection (i, j). How can we reach this in one step since our roads only go

left to right and bottom to top, the only way we can reach (i, j) is by taking a right edge

from it’s left neighbor. So, we can go from (i-1, j) to (i, j) or we can go from below from

(i, j-1) to (i, j). Notice that if a path comes from the left it must be different from a path

that comes from below. So, every path that comes from the left is different from every

path that comes from below. So, we can just add these up.

573



(Refer Slide Time: 08:20)

In other words if we say that paths(i, j) is the quantity we want to compute, we want to

count the number of paths from (0, 0) to (i, j). These paths must break up into 2 disjoint

sets those which come from the left which recursively or inductively if you prefer to say

is exactly the quantity paths(i-1, j). How many paths are there which reach (i-1, j) every

one of these paths can be extended by a right edge to reach (i, j) and, they will all be

different similarly paths(i, j-1) are all those paths which come from below, because they

all reach the point just below (i, j) from there each of them will be extended in a unique

way to (i, j)

This gives us our simple inductive formula, paths(i, j) is just the sum of paths(i-1, j) and

paths(i, j-1). Then we need to of course, investigate the base cases: in this case the real

base case is just paths(0, 0): in how many ways can I go from (0, 0) and just stay in (0,

0)? Well there is only one way, it is tempting to say 0 ways, but it is not 0 ways its one

way otherwise nothing will happen. So, we have one way by just doing nothing to stay in

(0, 0) and if we are now moving along the left column, if you are moving along the left

column then there are no paths coming from its left because we are already on the

leftmost column.

So, all the paths to (0,j) must be extensions of paths which have come from below up to

(0,j-1). Similarly if you are on the bottom row there is no way to come from below

574



because we are already on the lowest set of roads. So, paths(i, 0) can only come from the

left, from paths(i-1, 0).

(Refer Slide Time: 09:56)

This gives us a direct way to actually compute this even with holes because, the only

difference now is that if, there is a hole we just declare that no paths can reach that place.

So, we just add an extra clause which says paths(i, j) is 0 if there is a hole at (i,j);

otherwise we use exactly the same inductive formulation and now what happens is, if I

have a hole below me, if I have a hole below me, no paths can come from that direction

because by definition paths(i, j) at that point is 0.

575



(Refer Slide Time: 10:29)

So, once again if we now apply this and do this using the standard translation from the

inductive definition to a recursive program, we will find that we will wastefully

recompute the same quantity multiple times for instance paths(5,10). If we have paths(5,

10), it will require me to compute this and this.

These are the 2 sub problems for paths(5, 10), namely (4, 10) and (5, 9) but, in turn in

order to compute (4, 10) I will have to compute whatever is to its left and below it and in

order to compute (5, 9) I will also have to compute what is to its left and below it and

now what we find is that this quantity namely (4, 9) is computed twice, once because of

the left neighbor of (5, 10) and once because of the neighbor below (5, 10).

So, as we saw before we could use memoization to make sure that we never compute

(i,j) twice by storing a table i comma j, and every time we compute a new value for i

comma j we store it in the table and every time we look up, we need to compute one we

first check the table, if it is already there we look it up, otherwise we will compute it and

store it, but since we know there is a table and we know what the table structure is

basically it is all entries of the form i comma j. We can also see if we can fill up this

table iteratively by just examining the sub problems in terms of their dependencies.

576



(Refer Slide Time: 12:01)

In general a node the value depends on things to it left and below. If there are no

dependencies, it must have nothing to its left and nothing below and there is only one

such point namely (0, 0). This is the only point which is the base case which has nothing

to its left and nothing below so its value is directly read. So, we start from here.

(Refer Slide Time: 12:24)

Remember that the base value at (0, 0) is one, and now once we have done this it turns

out: you remember the road dependency, it said (i, 0) is (i-1, 0). So, we can fill up this,

because this has only one dependency which is known now. In this way I can fill up the

577



entire row and say that all along this row there is only one path namely the path that

starts going right and keeps going right. Now we can go up and see that this thing is also

known because, it also depends only on the value below it and once that is known then

these 2 are known.

So I can add them up; remember the value at any position is just the value to its left plus

the value to its bottom and now I start to get some non trivial values, and in this way I

can fill up this table row by row and at each point when I come to something I will get

the fact with the dependency unknown. The next row looks like this and the next row.

Now we come to the row with holes. So, for the row with holes, wherever we hit a hole

instead of writing the value that we would normally get by adding its left and bottom

neighbour we deliberately put a 0 because; that means, that no path is actually allowed

propagating through that row.

Now, when we come to the next row, the holes will automatically block the paths

coming from the wrong direction. So, here for instance we have only 6 paths coming

from the left because we have no paths coming from below similarly we have 26 paths

coming from the left and no paths coming from below. This is how our inductive

definition neatly allows us to deal with holes and from that inductive definition we

recognize the dependency structure and we imagine the memo table and now we are

filling up this memo table row by row so that at every point when we reach an (i, j) value

its dependent values are already known.

So, we can continue doing this row by row, and eventually we find look there are 1363

paths which avoid these two.

578



(Refer Slide Time: 14:18)

So, we could also do the same thing in a different way instead of doing the bottom row,

we can do the left column and the same logic says, that we can go all the way up then we

can start in the second column, go all the way up and do this column by column and not

unexpectedly, we should get the same answer. There is a third way to do this.

(Refer Slide Time: 14:39)

So, once we have one at (0, 0) then we can fill both the first element above it and the first

element to its right. So, we can do this diagonal, now notice that any diagonal value like

this one has both its entries. This has only one entry, this also. So I can now fill up this

579



diagonal. I can go one more diagonal, then I can go one more diagonal. So, we can also

fill up this thing diagonal by diagonal.

The dependency structure may not require us to fill it in a particular way we might have

very different ways to fill it up, all we want to do is systematically fill up this table in an

iterative fashion not recursively we do not want to call f of I, j and then look at f of i

minus 1, j. We want to directly say when we reach (i, j) we have the values we need, but

the values we need could come in multiple different orders. So, we could have done it

row wise, we could have done it column wise and here you see we can do it diagonally,

but it does not matter so long as we actually get all the values that we need.

(Refer Slide Time: 15:36)

So, one small point, so we have said that we can use Memoization or we can use

dynamic programming. One of the advantages of using dynamic programming is it

avoids this recursive call. So, recursion we had mentioned earlier, also in some earlier

lecture, comes with a price because whenever you make a recursive call, you have to

suspend a computation, store some values, restore those values. There is a kind of

administrative cost with recursion.

So, actually though it looks like only a single operation and we call fib of n minus 1 or

fib of n minus 2. There is actually a cost involved with suspending this operation, going

there and coming back. So, saving on recursion is one important reason to move from

Memoization to dynamic programming, but what dynamic programming does is to

580



evaluate every value regardless of whether its going to be useful for the final answer or

not.

In the grid path thing there is one situation where you can illustrate this. Imagine that we

have these obstacles placed exactly one step inside the boundary. Now, if we want to

reach this its very clear that I can only come all the way along the top row or all the way

up the rightmost column, there is no other way I can reach them. So, anything which is

inside this these positions there is no way to go from here out. There is no point in

counting all these values.

We have this region which is in the shadow of these obstacles which can never reach the

final thing. So, when we do memoization when we come back and recursively explore it

will never ask us to come here because it will never pass these boundaries. On the other

hand our dynamic programming will blindly walk through everything. So, it will do row

by row, column by column and it will eventually find the 0s, but it will fill the entire n by

n grid. In this case how many will memoization do? It will do basically only the

boundary. It will do only order m+n.

(Refer Slide Time: 17:32)

So, we have a memo table which has only a linear number of entries in terms of the rows

and columns and a dynamic programming entry, which is quadratic; if both were n it will

be n squared, thus is 2n. This suggests that dynamic programming in this case, is

wastefully computing a vast number of entries. So n squared is much larger than 2n

581



remember. It will take us enormous amount of time to compute it, if we just count the

cost per entry, but the flip side is that each entry that we need to add to the memo table

requires one recursive call.

The reality is that these recursive calls will typically cost you much more, than the

wastefulness of computing the entire table. In general even though you can analyze the

problem and decide that memoization will result in many fewer new values being

computed than dynamic programming. It is usually sound to just use dynamic

programming as the default way to do the computation.

582


