Programming, Data Structures and Algorithms in Python
Prof. Madhavan Mukund
Department of Computer Science and Engineering
Chennai Mathematical Institute,Madras

Week - 08
Lecture - 02
Grid Paths

(Refer Slide Time: 00:02)

Grid Paths

(5,10)
» Roads arranged in a
rectangular grid

* Can only go up or
right

* How many different
routes from (0,0) to
(m,n)? "

)T/J))$

(0,0

In the last lecture we looked at how to make iterative or inductive definitions more
efficient than naive recursion, and we saw memoization and dynamic programming as

tools to do this.

Now, let us look at a typical problem and see how we can apply this technique. So, here
is a problem of grid paths. So, we have a grid here, you can imagine there are roads
which are arranged in a rectangular format. We can imagine that the intersections are
numbered. So, we have (0, 0) at the bottom left corner and in this case, we have (5, 10)
because going across from left to right we have 1, 2, 3, 4, 5 different intersections and 10

going up. So, we have at (5, 10) the top right corner.

If these are roads the constraint that we have is that one can only travel up or right. So,
you can go up a road or you can go right, but you cannot come down. This is not
allowed. These are one way roads which goes up and right, and what we want to ask is

how many ways there are to go from the bottom left corner to the top right corner. So,

567

we want to count the number of what are called grid paths. So, @ grid path is one which
follows this right. So, we want to know how many such different paths are there which

take us from (0, 0) to (5, 10) only going up or right.

(Refer Slide Time: 01:26)

Grid Paths

(5,10) |

» Roads arranged in a \
rectangular grid

* Can only go up or
right

* How many different
routes from (0,0) to

(m,n)? ’——

(0,0)

So, here is one path drawn il blue.

(Refer Slide Time: 01:32)

Grid Paths

(5,10)

» Roads arranged in a (
rectangular grid

» Can only go up or
right

» How many different O :_)

routes from (0,0) to
(m,n)?

(0,0)

Here is a different path drawn il red and notice that these 2 paths actually, start in
different directions from the first point and they never meet except with the target. They

do not overlap at all. On the other hand we could have paths which overlap. This yellow

568

path overlaps a part of its way with the blue path in this section and it also overlaps with
the red path in 2 portions. There are many different ways in which we can choose to
make this up and right moves and the question is, how many total such different paths

are there?

(Refer Slide Time: 02:05)

Combinatorial solution
e S
* Every path from (0,0) to (5 10) has 15 segments

* In general m+n segments from (0,0) to (m,n)
* Of these exactly 5 are right moves, 10 are up moves

* Fix the positions of the 5 right moves among the
overall 15 positions

* 15 choose 5 = (15!)/(10)(5!) @ lc,(z)’

* Same as 15 choose 10: fix the 10 up moves

There is a very standard and elegant combinatorial solution. So, one way of thinking
about this is just to determine, how many moves we have to make. We have to go from 0
to 5 in one direction @nd 0 to 10 in the other direction. So, we have to make a total
number of 5 horizontal moves and 10 vertical moves, in other words every path no
matter which direction we started and which move, which choice of moves we make
must make 15 steps and of these 5 must be horizontal steps and 10 must be vertical steps,

because - all take . from (0, 0) to (5, 10).

So, all we have to do since we know that these 5 steps are horizontal and 10 are vertical
is to just demarcate which ones are horizontal and which are vertical. Now once we
know which ones are horizontal we know what sequence they come in because the first
horizontal - takes us from column 0 to column 1, second 1 takes us from one to 2. So,

we cannot do it in any order other than that.

So, we have in other words we have 15 slots, where we can make moves and then we
just say first we make an up move, then we make a right move then we make an up move

then make another up move and so on. So, every path can be drawn out like this as 10 up

569

moves and 5 right moves and if we fix the 5 right moves then automatically all the

remaining slots must be 10 up moves or conversely.

It is either 15 choose 5, it is the way of choosing 5 positions to make the right move out
of the 15, and it turns out that the definition of 15 choose 5 is clearly the same as 15
choose 10 because we could also fix the 10 up moves and the definition is basically... if
you know the definitions... then B choose k 1§ n factorial by k factorial into n minus k

factorial.

This k and n minus k basically says that 15 minus 5 18 10. So, we get a symmetric
function in terms of k and n minus k. In this case we can apply this formula if you would
like to call it that and directly get that the answer is 3003. There does not appear to be
much to compute other than writing out large factorials and then seeing what the number

comes.

(Refer Slide Time: 04:11)

Holes

(5,10)

* What if an
intersection is
blocked?

* (2,4), for example

« Paths through (2,4) v Il @9
need to be discarded 2
» Two of our earlier ?
examples are ¢
invalid paths
(0,0)

But the problem becomes more interesting, if we constrain it by saying that some of
these intersections are blocked for instance, supposing there is some road work going on
and we cannot go through this intersection (2, 4). This is the intersection 2 comma 4
second column and the fourth row counting from below. It’s actually 2 comma 3, but 1,
2, 3, 4 yeah 2 comma 4. Now, if we cannot go through this then any path which goes
through this particular block intersection should no longer be counted. Out to those 3003

some paths are no longer valid paths.

570

(Refer Slide Time: 04:49)

Holes

(5,10)

* What if an o=
intersection is |
blocked?

* (2,4), for example

« Paths through (2,4) B
need to be discarded

* Two of our earlier
examples are ‘ ? I_
invalid paths

(0,0)

For instance, in the earlier thing the blue path that we had drawn actually goes through
this, the red path does not, where the yellow path Gverlapped with the blue path
unfortunately in this bad section. It also passes through this. There are some paths which
are allowed from the 3003 and some which are not. So, how do we determine how many

paths survived this kind of block.

(Refer Slide Time: 05:09)

Combinatorial solution

* Every path through (2,4) goes from (0,0) to (2,4) and then

from (2,4) to (5,10) (_é_v
» Count these separately: // %_&
* (4+2)choose 2 = 15 wt /

* (6+3) choose 3 = 84 /
* Multiply to get all paths through (2,4): 1260

« Subtract from 15 choose 5 = 3003 to get valid paths that
avoid (2,4): 1743

So, again we can use a combinatorial argument in order to . blocked a path must go to

(2, 4) and then from (2, 4) to (5, 5). If we could only count how many paths go from (0,

571

0) to (2, 4) and then how many paths go from (2, 4) to (5, 10), these are all the bad paths.
So, we can count these bad paths and subtract them from the good paths. How do we
count the bad paths well we can just solve a smaller version of the problem. So, we have

an intermediate target.

So, we solve this grid how many paths go from here to here, how many paths go from
here to here. So, from (0, 0) to (2, 4) we get 4 plus 2 remember it 10 plus 5 it was a curve
or get, 10; 4 plus 2 choose 2. So, we get 15 and from here to here the difference is that
we have to do i both directions 3 and so, we have to go sorry we have to go up 6 and we

have to go right 3, we are at (2, 4). So, we have to go from 4 to 10 and from 20 5.

So, we have 6 plus 3 choose 3, 84 ways of going from (2, 4) to this and each of the ways
in the bottom, can be combined with a way on the top. So, we multiply this and we get
1260 paths which pass through this bad intersection, we subtract this from the original
number 3003 and we get 1743 paths which remain. So, a combinatorial approach still

works.

(Refer Slide Time: 06:32)

Holes

+ What if two intersections
are blocked?

» Subtract paths through
(2,4), (4,4)

+ Some paths are
counted twice! .

* Add back paths through
both holes

* Inclusion-exclusion:
messy

(0,0)

Now, what happens if we put 2 such intersections? So, we will you can do the same thing
we can count all the parts which get blocked because of the first intersection, we can
count all the paths which pass through in this case (4, 4) is the second intersection which

has been blocked. So, we can count all these parts which pass through (4, 4). This we

572

know how to do: we just computed it for (2, 4), but the problem is that there are some

paths like the yellow paths which pass through both (2, 4) and (4, 4).

So, we need a third count we need to count paths which pass through both of these and
make sure we do not double count them. So, one way is that we just add these back. This
is something which is called in combinatorics inclusion and exclusion. So, when we have
these overlapping exclusions, then we have to count the overlaps and include them back.
We have to keep doing this step by step. If we have 3 holes we get an even more
complicated inclusion exclusion formula and it rapidly becomes very complicated even

to calculate the formula that we need to get. Is there a simpler way to do this?

(Refer Slide Time: 07:37)

Inductive formulation

« How can a path reach (i)
« Move up from (i,j-1) (1) ()
* Move right from (i-1,j) I

» Every path to these neighbours (i,j-1)

extends in a unique way to (i,))

Let us look at the inductive structure of the problem, suppose we say we want to get in
one step to intersection (i, J). How can we reach this in one step since our roads only go
left to right and bottom to top, the only way we can reach (i, j) is by taking a right edge
from it’s left neighbor. So, we can go from (i=1,]) to (i, J) or we can go from below from
(1, J=1) to (1,). Notice that if a path comes from the left it must be different from a path
that comes from below. So, every path that comes from the left is different from every

path that comes from below. So, we can just add these up.

573

(Refer Slide Time: 08:20)

Inductive formulation

» Paths(i,j) : Number of paths from (0,0) to (i,j)
» Paths(i,j) = Paths(i-1,j) + Paths(i,j-1)

* Boundary cases

» Paths(i,0) = Paths(i-1,0) # Bottom row

» Paths(0,j) = Paths(0,j-1) # Left column
Qﬁ____’___——‘

» Paths(0,0) =1 # Base case

————

In other words if we say that - is the quantity we want to compute, we want to
count the number of paths from (0, 0) to [(i;j). These paths must break up into 2 disjoint
sets those which come from the left which recursively or inductively if you prefer to say
is exactly the quantity paths(i=l,j). How many paths are there which reach (1,]) every
one of these paths can be extended by a right edge to reach - and, they will all be
different similarly paths(i, j=1) are all those paths which come from below, because they
all reach the point just below (i) from there each of them will be gxtended in a unique

way fol(i])
This gives us our simple inductive formula, paths(,j) is just the sum of paths(i=1, j) and

paths(i, j=1). Then we need to of course, investigate the base cases: in this case the real
base case is just _ . how many ways can I go from (0, 0) and just stay in (0,
0)? Well there is @nly one way, it is tempting to say 0 ways, but it is not 0 ways its one
way otherwise nothing will happen. So, we have one way by just doing nothing to stay in
(0, 0) and if we are now moving along the left column, if you are moving along the left
column then there are no paths coming from its left because we are already on the

leftmost column.

So, all the paths f0/(05)) must be extensions of paths which have come from below up to

(03°1). Similarly if you are on the bottom row there is no way to come from below

574

because we are already on the lowest set of roads. So, paths(i; 0) can only come from the

left, from paths(i=Iz0)!

(Refer Slide Time: 09:56)

Dealing with holes

Paths(i,j) = 0, if there is a hole at (i,))

» Paths(j,j) = Paths(i-1,j) + Paths(i,j-1), otherwise

+ Boundary cases
» Paths(i,0) = Paths(i-1,0) # Bottom row
* Paths(0,)) = Paths(0,j-1) # Left column
» Paths(0,0) =1 # Base case

This gives us a direct way to actually compute this even with holes because, the only
difference now is that if, there is a hole we just declare that no paths can reach that place.
So, we just add an extra clause which says paths(i, j) is 07if there is a hole at (i)
otherwise we use exactly the same nduetive formulation and now what happens is, il
have a holg below me, if [have a hole below me, no paths can come from that direction

because by definition paths(i, j) at that point is 0.

575

(Refer Slide Time: 10:29)

Computing Paths(i,j)— 1~

« Naive recursion will recompute mult:ple@

» Paths(5,10) requires Paths(4,10) and Paths(5,9)

* Both Paths(4,10) and Paths(5,9) require
Paths(4,9)

» Use memoization ...

* ... or compute the subproblems directly in a
suitable way

So, once again if we now apply this and do this using the standard translation from the
inductive definition to a recursive program, we will find that we will wastefully
recompute the same quantity multiple times for instance paths(5,10). If we have paths(5)
10)] it will require me to compute this and this.

These are the 2 sub problems for paths(5; 10), namely (4, 10) and (5, 9) but, in turn in

order to compute (4, 10) [will have to compute whatever is to its left and below it and in
order to compute (5, 9) I will also have to compute what is to its left and below it and
now what we find is that this quantity namely (4, 9) is computed twice, once because of

the left neighbor of (5, 10) and once because of the neighbor below (5, 10).

So, as we saw before we could use memoization to make sure that we never compute
- twice by storing a table i comma j, and every time we compute a new value for i
comma j we store it in the table and every time we look up, we need to compute one we
first check the table, if it is already there we look it . otherwise we will compute it and
store it, but since we know there is a table and we know what the table structure is
basically it is all entries of the form i comma j. We can also see if we can fill up this

table iteratively by just examining the sub problems in terms of their dependencies.

576

(Refer Slide Time: 12:01)

Dynamic programming

(5,10)
* |dentify dependency —_
structure T
* Paths(0,0) has no
dependencies []

« Start at (0,0)

. general a node the value depends on things to it left and below. If there are no
dependencies, it must have nothing to its left and nothing below and there is only one

such point namely (0, 0). This is the only point which is the base case which has nothing

to its left and nothing below §0'its value is directly read. So, we start from here.

(Refer Slide Time: 12:24)

Dynamic programming

11 51 181 526 1363

10 40 130 345 837
30 90 215 492
21 60 125 272

« Start at (0,0) 13 39 65 147

— ok b b b -, -

9

8

7

6 6 26 26 82
* Fill row by row 5 [@ 20 [56

4 10 20 35 56

—6—10—15—21

2—3—4—85—6

= —

Remember that the base value at (0, 0) is one, and now once we have done fhis'it turns
out: you remember the road dependency, it said (@ 0) is (i=150). So, we can fill up this,
because this has only one dependency which is known now. In this way [can fill up the

577

entire row and say that all along this row there is only one path namely the path that
starts going right and keeps going right. Now we can go up and see that this thing is also
known because, it also depends only on the value below it and once that is known then

these 2 are known.

Sa I can add them up; remember the value at any position is just the value to its left plus
the value to its bottom and now I start to get some non trivial values, and in this way I
can fill up this table row by row and at each point when I come to something I will get
the fact with the dependency unknown. The next row looks like this and the next row.
Now we come to the row with holes. So, for the row with holes, wherever we hit a hole
instead of writing the value that we would normally get by adding its left and bottom
neighbour we deliberately put a 0 because; that means, that no path i§ actually allowed

propagating through that row.

Now, when we come to the next row, the holes will automatically block the paths
coming from the wrong direction. So, here for instance we have only 6 paths coming
from the left because we have no paths coming from below similarly we have 26 paths
coming from the left and no paths coming from below. This is how our inductive
definition neatly allows us to deal with holes and from that inductive definition we
recognize the dependency structure and we imagine the memo table and now we are
filling up this memo table row by row so that at every point when we reach an (i, J) value

its dependent values are already known.

So, we can continue doing this row by row, and eventually we find look there are 1363

paths which avoid these two.

578

(Refer Slide Time: 14:18)

Dynamic programming

51 181 526 1363
40 130 345 837
30 90 215 492
21 60 125 272
13—39 147
6 26 82

[0 2 56

-
o -

« Start at (0,0)

» Fill by column

—h edh e e dh e e e e e
- NWHs T N
~ozxsaBR 2

So, we could also do the same thing in a different way instead of doing the bottom row,
we can do the left column and the same logic says, that we can go all the way up then we
can start in the second column, go all the way up and do this column by column and not

unexpectedly, we should get the same Answer. There is a third way to do this.

(Refer Slide Time: 14:39)

Dynamic programming

I i
| | |
% N I
7 o
* Start at (0,0) i T T

* Fill by diagonal —’77 j—-A '

So, once we have one at (0, 0) then we can fill both the first element above it and the first

element to its Fight. So, we can do this diagonal, now notice that any diagonal value like

this one has both'its entries. This has only one entry, this @lse. S0 can now fill up this

579

diagonal. I can go one more diagonal, then I can go one more diagonal. So, we can also

fill up this thing diagonal by diagonal.

The dependency structure may not require us to fill it in a particular way we might have
very different ways to fill it up, all we want to do is systematically fill up this table in an
iterative fashion not recursively we do not want to call f of I, j and then look at f of 1
minus 1, j. We want to directly say when we reach (i, j) we have the values we need, but
the values we need could come in multiple different orders. So, we could have done it
row wise, we could have done it column wise and here you see we can do it diagonally,

but it does not matter so long as we actually get all the values that we need.

(Refer Slide Time: 15:36)

Memoization vs
dynamic programming

* Holes just inside the
border

*» Memoization never
explores the shaded

region

So, one small point, so we have said that we can use Memoization or we can use
dynamic programming. On€ of the advantages of using dynamic programming is it
avoids this recursive call. So, recursion we had mentioned earlier, also in some earlier
lecture, comes with a price because whenever you make a recursive call, you have to
suspend a computation, store some values, restore those values. There is a kind of

administrative cost with recursion.

So, actually though it looks like only a single operation and we call fib of n minus |1 or
fib of n minus 2. There is actually a cost involved with suspending this operation, going
there and coming back. So, saving on recursion is one important reason to move from

Memoization to dynamic programming, but what dynamic programming does is to

580

evaluate every value regardless of whether its going to be useful for the final answer or

not.

In the grid pathl thing there is one situation where you can illustrate this. [magine that we
have these obstacles placed exactly one step inside the boundary. Now, if we want to
reach this its very clear that I can only come all the way along the top row or all the way
up the rightmost column, there is no other way I can reach them. So, anything which is
inside this these positions there is no way to go from here out. There is no point in

counting all these values.

We have this region which is in the shadow of these obstacles which can never reach the
final thing. So, when we do memoization when we come back and recursively explore it
will never ask us to come here because it will never pass these boundaries. O the other
hand our dynamic programming will blindly walk through everything. So, it will do row
by row, column by column and it will eventually find the Os, but it will fill the entire n by
n grid. In this case how many will memoization o2 0t will do basically only the
boundary. It will do only order m#n|

(Refer Slide Time: 17:32)

Memoization vs
dynamic programming

* Memo table has
O(m+n) entries - ..

* Dynamic
programming blindly-
fills all O(mn) entries

* |teration vs recursion
— “wasteful”
dynamic
programming is still
better, in general

So, we have a memo table which has only a linear number of entries in terms of the rows
and columns and a dynamic programming entry, which is quadratic;/if both were nlit will
be n Squared, thus is 2n. This suggests that dynamic programming in this case, is
wastefully computing a Vast number of entries. So f'squared is much larger than 2n

581

remember. It will take us enormous amount of time to compute it, if we just count the
cost per entry, but the flip side i§ that each entry that we need to add to the memo table

requires one recursive call.

The reality is that these recursive calls will typically cost you much more, than the
wastefulness of computing the entire table. In general even though you can analyze the
problem and decide that memoization will result in many fewer new values being
computed tham dynamic programming. It is usually sound to just use dynamic

programming as the default way to do the computation.

582

